
PH
YS

IC
S

Power-law distribution of degree–degree distance: A
better representation of the scale-free property of
complex networks
Bin Zhoua,b,c,1 , Xiangyi Mengb,c,1,2 , and H. Eugene Stanleyb,c,2

aSchool of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China; bCenter for Polymer Studies, Boston
University, Boston, MA 02215; and cDepartment of Physics, Boston University, Boston, MA 02215

Contributed by H. Eugene Stanley, March 5, 2020 (sent for review October 29, 2019; reviewed by Antonio Coniglio and Janos Kertesz)

Whether real-world complex networks are scale free or not
has long been controversial. Recently, in Broido and Clauset
[A. D. Broido, A. Clauset, Nat. Commun. 10, 1017 (2019)], it was
claimed that the degree distributions of real-world networks
are rarely power law under statistical tests. Here, we attempt
to address this issue by defining a fundamental property pos-
sessed by each link, the degree–degree distance, the distribution
of which also shows signs of being power law by our empiri-
cal study. Surprisingly, although full-range statistical tests show
that degree distributions are not often power law in real-world
networks, we find that in more than half of the cases the degree–
degree distance distributions can still be described by power
laws. To explain these findings, we introduce a bidirectional
preferential selection model where the link configuration is a
randomly weighted, two-way selection process. The model does
not always produce solid power-law distributions but predicts
that the degree–degree distance distribution exhibits stronger
power-law behavior than the degree distribution of a finite-
size network, especially when the network is dense. We test
the strength of our model and its predictive power by examin-
ing how real-world networks evolve into an overly dense stage
and how the corresponding distributions change. We propose
that being scale free is a property of a complex network that
should be determined by its underlying mechanism (e.g., prefer-
ential attachment) rather than by apparent distribution statistics
of finite size. We thus conclude that the degree–degree distance
distribution better represents the scale-free property of a complex
network.

complex network | scale-free property | power-law distribution | degree–
degree distance | bidirectional preferential selection

The study of scale-free complex networks has undergone an
exponentially rapid and highly controversial development in

recent decades (1–7). Since its first appearance in ref. 1, the
concept of scale-free complex networks has broadened itself
more rapidly than anyone expected, and its abundance in real
life now arguably encompasses many areas from fundamental
physics (8–11) to social systems (12, 13). Consequently, scale-free
complex networks are now commonly regarded as an essential
substrate for studying many other facets in network science (14–
23), such as percolation (24–26), epidemic spreading (27–29),
and information diffusion (30–33).

Unfortunately, for all of its wide influence, the most basic
definition of a network being “scale free” has never reached
a common sense agreement (34, 35). Across the broad liter-
ature, the definition may originate in the statement that the
statistics of the degree distribution P(k) follows a precise or
imprecise power law. It may also arise from the acknowledg-
ment that being scale free is an intrinsic network property
determined by some family of mechanisms of network genera-
tion (e.g., the preferential attachment mechanism) (36, 37). The
ambiguity herein depreciates pertinent studies and deepens the
controversy.

The degree distribution-based definition implies an equiv-
alence between scale free and “power law.” In other words,
being scale free is treated as an explicit behavior, since for
any P(k)∝ k−α, one has P((1 + ε)k)' (1 + ε)−αP(k) where
ε is an infinitesimal transformation of the scale (i.e., dilation).
Many studies have, however, challenged on statistical grounds
that the degree distributions are not rigorously power law in
real-world complex networks (38–46). Instead, they follow alter-
native, nonpower-law distributions, which are statistically pre-
ferred. Thus, the abundance of scale-free networks seems to
be a negative conclusion (34). Nevertheless, such a statistics-
based argument is imperfect. First, even for synthetic scale-free
networks, the analysis in ref. 34 may not give the strongest
statistical significance of power laws. Second, one cannot fully
eliminate the possibility that some nonpower-law distributions
are merely due to statistical limitations by finite size or binning
(35). For example, theoretically a fluctuation-induced exponen-
tial cutoff may exist in the extreme upper tail of any power-law
distribution.

We here argue that the equivalence between scale free and
power law is questionable. We introduce a fundamental prop-
erty, the degree–degree distance, defined for each link of a
network. Full-range statistical tests show that, although degree
distributions are not often power law, degree–degree distance
distributions can still be described by power laws in many
real-world complex networks. Hence, the distribution-based
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definition of being scale free is incomplete: different distri-
butions may contradict each other in the appearance of their
power-law statistics. Our network generation model also con-
firms our findings via analytical solutions and finite-size simula-
tion. We are convinced that the scale-free property of a network
is an implicit property that should not be defined by apparent
statistics on finite-size networks but determined by the underly-
ing mechanism. Our results imply that the degree distribution
is not the only representation of scale-free property, nor the
best one.

Results
Definition of Degree–Degree Distance. Given a network G(V ,E),
each node i ∈V is naturally gifted a scale, the degree ki (i.e., the
number of nodes that are connected to node i). This natural scale
is independent of the details of network realization and deter-
mined only by network topology, not by extrinsic attributes. In
contrast, each link (i , j )∈E is a 2-tuple that has no single com-
parable scale unless assigned an additional attribute such as a
weight or a capacity. The lack of a comparable scale renders links
an inferior status in most statistical studies of complex networks.

Our task here is to regain the statistical importance of links by
introducing a simple but useful property that is “link oriented”—
the degree–degree distance. The definition of degree–degree
distance, η(i , j ), is given by log η(i , j ) = log η(j , i) = | log ki −
log kj |, (i , j )∈E . The degree–degree distance is a natural scale,
in the sense that η(i , j ) is also determined solely by network
topology. The degree–degree distance is also dimensionless,
in the sense that our definition can be rewritten η(i , j ) =
max{ki , kj}/min{ki , kj} (i.e., the ratio between the degrees of
the nodes at two ends after ordering). Obviously, η lies in the
range of [1, max{ki |i ∈V }] in G, which incidentally is the same
range in which k lies if kmin = 1. Even if it is log η that is the
positive measure and should be called a “distance,” our work
remains focused on η, primarily because we find out later that η
plays the same role—if not a better role—as k traditionally does
in the study of power laws in complex networks. We will see that
the distribution of η, P(η), also follows a power law in real life
[i.e., P((1 + ε)η)' (1 + ε)−βP(η)], with β the scaling exponent.
In reality, any result on η has more statistical significance than
k , given that most studied networks are connected and |E |> |V |
holds true.

Note that the study of degree–degree relations is not new. That
being said, most studies focus on degree–degree correlation fea-
tures (47, 48) (e.g., assortativity), which only have a statistical
sense (SI Appendix). In our work, the degree–degree distance is
a network topological property that each link possesses per se.
It is similar to link weight or link capacity, but it is inherent and
thus, more fundamental.

Empirical Result. Whether real-world networks should exhibit
power laws has always been worth debating (34, 35). Our
aim is to retest the statistical significance of the claim that
degree distributions are power law in the real world and most
importantly, to look into the statistics of degree–degree dis-
tance distributions for comparison. To this end, we collected
32 typical real-world networks that have a wide coverage of
economic, biological, informational, social, and technological
domains, with their sizes ranging from hundreds to tens of mil-
lions of nodes (SI Appendix). The networks exhibit composite
properties such as being directed or weighted, yet we treat them
as simple, undirected graphs so as to investigate their most
basic topological structures. Fig. 1 shows the degree distribu-
tions and degree–degree distance distributions of 16 charac-
teristic complex networks. The other 16 networks are shown
in SI Appendix. Fig. 1 shows that in some networks (Fig. 1
A–D), both P(k) and P(η) appear to be power law, while
for others (Fig. 1 E–P), P(k) appears to differ from a power

law and exhibit complicated turning points before k enters the
upper tail.

We further conducted unbiased statistical analysis of full-
range fitting to confirm this discovery (SI Appendix has details).
Although it has been argued that only in a partial range should
the fitting be expected to be power law even for a scale-free net-
work, we decided not to add such consideration to our statistical
analysis to avoid false positive conclusions (i.e., to avoid such
cases that the fitting is partially power law but the network is
not scale free). An unbiased, assumption-independent estima-
tion of the appropriate range is known to be a nontrivial issue
(49). Fig. 2 shows that only for 16.7% of all 32 networks is a
power-law fit of P(k) favored by AICc (the corrected Akaike
information criterion). The log-normal fit is the most favored,
for 65.6%. Our result is, in general, consistent with ref. 34. In
contrast, a power-law fit of P(η) is favored for 37.5%, and it is
also the most favored. The percentage is more than twice that
of P(k). In addition, under the statistical assumption that the
accompaniment of an exponential cutoff may not be regarded as
a contradiction but a supportive correction to the fitting (35), the
percentages of the power laws of P(k) and P(η) being favored
will increase to 28.1 and 56.2%, respectively. More than half of
P(η) in real-world networks should still be power-law distribu-
tions statistically. Additional tests on the statistical significance
of our results are also given in SI Appendix.

It is worth noting that there are synthetic or real-world net-
works in which neither P(k) nor P(η) should be power law by
apparent reasoning (e.g., the Erdős–Rényi network and the road
network). Their nonpower-law distributions are statistically con-
firmed by AICc comparison (SI Appendix), which again suggests
that the full-range statistical analysis is unbiased to false positive
conclusions. Obviously, some network generation mechanisms
never produce a power-law distribution of P(η).

Bidirectional Preferential Selection. To explain our findings, we
here introduce a heuristic configuration-like model built with no
artificial scale set. It consists of the following steps.

1) At the beginning, there are N nodes. Each node i is assigned
an importance weight, ωi , which is randomly sampled from a
sample space {ω|ω=ωmin +n,n ∈N} by a power-law prob-
ability distribution, Prob[ωi =ω] = cω−α. Here, c is a nor-
malization constant. Define ω̄=N−1∑N

i=1 ωi , of which the
expectation is E[ω̄] =

∑∞
ω=ωmin

ωcω−α.
2) At each time step, two nodes i and j are randomly and

independently chosen, and a link is established between
them. The probability to choose i and j is Prob[i↔ j ] =
(ωi/N ω̄)(ωj/N ω̄). If i and j have been connected before, we
discard the link and redo this step without updating the time
step.

3) After T time steps, a network of N nodes and T links is
generated.

Our bidirectional preferential selection model differs from
other models in that it uses a two-way preferentially weighted
selection process. A link is more likely to be established when
both nodes exhibit a preference for each other. In addition, the
number of nodes N is fixed in advance. All network properties
are determined by how the T links are distributed (i.e., the estab-
lishment of links, not the addition of nodes, determines network
properties).

In the continuum limit, the degree distribution of our model is
(Materials and Methods)

P(k)'
∫ ∞
ωmin

cω−α
1√

2πσ(ω,T )
exp

[
− (k −µ(ω,T ))2

2σ2(ω,T )

]
dω,

[1]
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Fig. 1. Degree distributions P(k) (blue) and degree–degree distance distributions P(η) (red) of 16 characteristic real-world complex networks (A–P) of which
metadata are given in SI Appendix. In general, P(η) exhibits a better power law than P(k) exhibits.

where µ(ω,T ) = (2ω/N ω̄)T and σ2(ω,T ) = (2ω/N ω̄)(1−
2ω/N ω̄)T . Eq. 1 is an integral of two parts: a power-law dis-
tribution and a Gaussian packet, the latter of which can be
approximated as a Dirac function when σ2(ω,T )/µ2(ω,T )→ 0
as T ,N →∞. We further set T =N s/2 =O(N s), 1< s < 2, and
then, Eq. 1 can be approximated as

P(k)' c
(
N 1−s ω̄

)1−α
k−α, [2]

provided that k lies in the upper tail,

k�µ(ωmin,T ) =
ωmin

ω̄
N s−1, [3]

which means that k , where the Dirac peak is located, should
stay away from the boundary ω≈ωmin. The turning point to the
upper tail in Eq. 3 is controlled by the parameter s , which quan-
tifies how dense the network is. We see that, given a preferential
attachment mechanism, the degree distribution of the generated
network is not necessarily power law in the full range but only in
the upper tail. Its deviation from being a power law increases as
s increases.

Next, after taking the continuum limit, the degree–degree
distance distribution is given by (Materials and Methods)

P(η)'
∫ ∞
ωmin

∫ ∞
ωmin

cω−α1 cω−α2 dω1dω2

T/ [N (N − 1)/2]

(
ηµ2σ

2
1 +µ1σ

2
2

η2σ2
1 +σ2

2

)
· µ1µ2/4T√

2π
√
η2σ2

1 +σ2
2

exp

[
− (ηµ1−µ2)2

2 (η2σ2
1 +σ2

2)

]
, [4]

where µi is µ(ωi ,T ) and σi is σ(ωi ,T ), with i = 1, 2, respec-
tively. Note that in Eq. 4, the Dirac peak is determined by η≈
µ2/µ1, which receives contributions from not only the bound-
ary ω1≈ ωmin or ω2≈ ωmin but also, the neighborhood of the
parametric curve determined by µ2/µ1 = Const. in the {ω1,ω2}
domain. This is true for any η, even when η is close to one.
Hence, P(η) changes smoothly with η after averaging the
{ω1,ω2} domain, and no upper-tail approximation is needed.
This explains why P(η) exhibits a better power law than P(k).
Finally, from Eq. 4,

P(η)'
√
π

8
c2N

1−s
2 ω

7
2
−2α

min ω̄−
3
2 η−α+1 [5]

is further derived, indicating that β=α− 1 in our model.
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Fig. 2. The best fit of the distributions P(k) and P(η) for real-world complex
networks determined by statistical analysis. The best fit is the most favored
by AICc.

Model Simulation and Validation. As suggested by the bidirec-
tional preferential selection model, P(η) should exhibit a smooth
power law in the full range of η, yet P(k) should exhibit devia-
tion where k is small. The difference is more obvious when s→ 2
(i.e., as the network evolves and becomes more dense). To verify
this, we take three real-world evolving complex networks con-
structed using three regional time-dependent Wikipedia hyper-
links datasets (German, France, and Italy) and examine how
they evolve over time. Fig. 3 A–C show that in roughly a
100-mo period, all three networks have evolved from being rel-
atively sparse into an overly dense stage where the number of
links overwhelms the number of nodes. Both P(k) and P(η) are
approximately power law in the early stage (Fig. 3 E–G), but in
the late stage, all three P(k) exhibit turning points rather than
smooth straight lines, while the three P(η) differ from P(k) by
exhibiting the same power laws—if not stronger (Fig. 3 I–K).
These findings are evidence that whether a network is dense or
not determines how better its P(η) as a representation of scale-
free property is. On the other hand, our simulation (Fig. 3 D, H,
and L) matches the real-world networks, evolves in the same way
from being sparse to dense, and exhibits a similar comparison
between P(k) and P(η) in the two stages. Observations on our
synthetic networks are further tested by unbiased statistical tests
(SI Appendix), confirming that P(η) is power law, while P(k)
may not be. The good match between the three empirical net-
works and our simulation results indicates that the preferential
selection model is more realistic and is better at capturing the
complex, unseen mechanism that generates real-world scale-free
networks.

Also shown in Fig. 3 are the scaling exponents, α and β,
derived from linear fits of P(k) and P(η) in the log–log scale,
respectively. Note that now α is derived by fitting only the upper
tail of P(k) under the a priori assumption that a power-law α
“exists” (Eq. 3). We further apply the same fits on all 32 real-
world networks in order to study the relation between α and β.
In Fig. 4, the fitting results are plotted, and β≈ 1.0249α− 1.0643
is confirmed. The relation β=α− 1 is not limited to our model
but is, in fact, more universal. Denote P(k , ·) the probability that
a randomly chosen link is connected to a node of degree k via one
of its ends; then, P(k , ·)' kP(k), as there are P(k) fractions of
nodes that have degree k and each contributes k links to the total
number of links. Suppose P(η)∝P(k = ηkmin, ·), then P(η)∝
η−α+1 given P(k)∝ k−α (Materials and Methods has a complete
description).

Discussion
Scale-Free Property. We have shown that, for finite-size networks,
P(η) can statistically be power law when P(k) is not. Thus,
we argue that being scale free for complex networks is not
a behavior but rather, a property that is determined not by
apparent statistics but by intrinsic mechanism. P(k) not being
power law does not necessarily indicate that the complex net-
work is not scale free. Regarding the intrinsic mechanism, we
can say that the preferential attachment process (36) is scale
free because it uses no artificial scale (except kmin or ωmin,
which is rather a cutoff introduced to deal with the contin-
uum limit). In our preferential selection model, all results stay
unchanged when we double every ω in its mechanism. Thus, the
model itself is also scale free, as well as the synthetic networks
it generates even if against apparent statistics. For real-world
networks, however, the mechanism is often unknown and has to
be inferred, which renders the question on scale free extremely
difficult.

Note that the word power law has been used in the purely
statistical, nonasymptotic sense through the context. Ideally,
any distribution given by an infinite-size, scale-free network
is trivially asymptotically power law. However, as a matter
of fact, being asymptotically power law should not be con-
fused with being statistically power law for finite-size networks.
Only regarding the latter can statistically sound conclusions be
reached, and only from unbiased, rigorous, and complete statis-
tical tests can the underlying mechanism be correctly inferred
and the controversial question on scale free satisfactorily
answered.

Conclusion
We have defined the degree–degree distance, η(i , j ), for each
link (i , j ) of a complex network, given by log η(i , j ) = | log ki −
log kj |, as a fundamental network topological property. We find
that in many real-world networks the distribution of degree–
degree distance P(η) also follows a power law, which is, sur-
prisingly, more statistically significant than the power law of the
distribution of degree P(k). Only 28.1% of the considered net-
works have degree distributions that can be properly modeled by
power laws, yet 56.2% have degree–degree distance distributions
that can be modeled by power laws. We explain our findings by
introducing a configuration-like network generation mechanism
called bidirectional preferential selection. Our model success-
fully describes the power laws of P(k) and P(η) and also predicts
the deviation of P(k) from being power law when the network
evolves to an overly dense stage, which is further verified and
confirmed by analysis on the evolution of real-world complex net-
works. The model also predicts a universal relation between α
and β, the scaling exponents of P(k) and P(η), respectively, that
β=α− 1. Once again, the relation is justified by real-world data
analysis.

Our results allow us to address doubts about the abundance of
scale-free networks by proposing that being scale free is a prop-
erty determined not by apparent statistics but by an underlying
mechanism. Preferential attachment, for example, is considered
scale free, even when it may generate some finite-size networks
that do not have statistically significant power-law P(k). We
conclude that P(η) is a better representation of the scale-free
property of a complex network, especially when the network is
dense. In future research, we look forward to a complete sta-
tistical test on P(η) to consolidate our conclusion and further
investigations into the deeper mechanisms responsible for the
scale-free property.

Materials and Methods
Derive Degree–Degree Distance Distribution from Joint Probability Distribu-
tion. The joint probability distribution P(x, y) is defined as the fraction of
links that are equal to the 2-tuple (x, y) (i.e., the fraction of links that
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Fig. 3. Three real-world evolving complex networks, which are constructed from regional, time-dependent Wikipedia hyperlinks, as well as simulation
result of the bidirectional preferential selection model for comparison. A shows how the numbers of nodes (blue circles) and links (red diamonds) have
evolved in 126 mo in the Wikipedia (German) hyperlinks network. E shows the temporal degree distribution P(k) (blue circles) and degree–degree distance
distribution P(η) (red diamonds) of the Wikipedia (German) hyperlinks network at an early stage (in the 18th month). I shows the same P(k) and P(η) but
at a later stage (in the 126th month). Linear fits (of the upper tails if necessary) of P(k) and P(η) are also given (solid lines). Similarly, B, F, and J are from
Wikipedia (France). C, G, and K are from Wikipedia (Italy). On the other hand, D, H, and L are our simulation result from the bidirectional preferential
selection model. The parameters are chosen as N = 2× 104, ωmin = 1, and α= 2.

connect nodes of degree x and degree y). It is obvious that P(x, y) = P(y, x)
by definition. The cumulative probability distribution of η is

P(H≤ η) = P(Y/η <X≤Yη) =

ηy∫
max{y/η,kmin}

∞∫
kmin

P(x, y)dxdy,

where ln H = |ln X− ln Y|. Thus, the probability density distribution of η is

P(η) = P(η <H≤ η+ dη) = dP(H≤ η)/dη

=

∞∫
kmin

P(ηy, y)ydy +

∞∫
ηkmin

P(y/η, y)
y

η2
dy

=

∞∫
kmin

2P(ηy, y)ydy. [6]

If the joint probability distribution can be factorized into a product
of two power laws, P(k1, k2)' ck−α+1

1 k−α+1
2 , then Eq. 6 immediately

yields P(η)' c(α− 2)−1k−2α+4
min η−α+1 and so, β=α− 1. Another exam-

ple is the Barabási–Albert model with the degree distribution P(k) =

2kmin(kmin + 1)/(k(k + 1)(k + 2)) that simply implies α= 3. Meanwhile, its
joint probability distribution

P(k1, k2) =
2kmin (kmin + 1)

k1 (k1 + 1)k2 (k2 + 1)

1−

(2kmin+2
kmin+1

)(k1+k2−kmin
k2−kmin

)
(k1+k2+2

k2+1

)
 [7]

is given by ref. 50. Eq. 6 together with Eq. 7 yields

P(η)' 4 (kmin + 1)

(
1 + kmin ln

kmin

1 + kmin

)
η
−2

+ · · · ,

confirming that β= 2. Note that Eq. 7 cannot be factorized but is a mixed
distribution with nonzero correlation (2), yet β=α− 1 is still satisfied.

Probability Distributions of the Bidirectional Preferential Selection Model.
Suppose a node is initially assigned an importance weight ωi . The prob-
ability that it has degree k after T time steps is a binomial distribution,(T

k

)
p(ωi)

k(1− p(ωi))
1−k, where p(ωi)' 2ωi/Nω̄ is the probability that the

node is chosen in one time step (given T�N2). Because the probability
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Fig. 4. Relation between the two scaling exponents, α and β, of degree
distribution and degree–degree distance distribution, respectively. The fit-
ting function is β≈ 1.0249α− 1.0643, and R2≈ 0.969. The shaded area is
within one SE.

that the node is initially assigned ωi =ω is cω−α, taking the sum of all
possibilities yields

P(k)'
∞∑

ω=ωmin

cω−α
(T

k

)( 2ω

Nω̄

)k(
1−

2ω

Nω̄

)T−k

. [8]

Note that the binomial distribution (Eq. 8) can be approximated by a con-
tinuous Gaussian distribution when (2ω/Nω̄)T = O(Ns−1) is large enough
[given T = O(Ns)], which gives rise to Eq. 1.

We now calculate the joint probability distribution P(k1, k2). The condi-
tional probability that two nodes of importance weights ωi and ωj are con-
nected in T time steps is Prob

[
i↔ j|{ωi ,ωj}

]
= 1− (1− (ωi/Nω̄)(ωj/Nω̄))T '

(ωi/Nω̄)(ωj/Nω̄)T . Therefore,

Prob
[
{ωi ,ωj}|i↔ j

]
=

Prob
[
i↔ j|{ωi ,ωj}

]
· Prob

[
{ωi ,ωj}

]
Prob [i↔ j]

is obtained using Bayes’ rule. So, the probability of choosing a link (i, j) when
the two nodes have importance weights ωi and ωj is

Prob
[
{ωi ,ωj}|i↔ j

]
=

(ωi/Nω̄)
(
ωj/Nω̄

)
T · cω−αi cω−αj

T/ [N (N− 1)/2]
. [9]

Note that Eq. 9 can be factorized into Prob
[
{ωi ,ωj}|i↔ j

]
= f(ωi)f(ωj). As

in Eq. 8, taking the sum of all possibilities yields

P(k1, k2)'

 ∞∑
ω=ωmin

f(ω)
( T

k1

)( 2ω

Nω̄

)k1
(

1−
2ω

Nω̄

)T−k1


·

 ∞∑
ω=ωmin

f(ω)
( T

k2

)( 2ω

Nω̄

)k2
(

1−
2ω

Nω̄

)T−k2

. [10]

Finally, taking the Gaussian approximation of Eq. 10 and putting it into Eq.
6 produces the final form (Eq. 4).

Data Availability. All data are publicly available at the Colorado Index of
Complex Networks at https://icon.colorado.edu.
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