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h i g h l i g h t s

• A method is proposed to deeply characterize network topology.
• A similarity coefficient is defined to quantitatively distinguish networks.
• The similarity coefficient can quantitatively measure the topology stability of the network generated by a model.
• The network generated by a mode is more and more stable with the increasing of the network scale.
• For a network model, a broader node degree distribution will make the network generated by the model more unstable.
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a b s t r a c t

A method based on the breadth-first search tree is proposed in this paper to characterize
the hierarchical structure of network. In this method, a similarity coefficient is defined to
quantitatively distinguish networks, and quantitatively measure the topology stability of
the network generated by a model. The applications of the method are discussed in ER
random network, WS small-world network and BA scale-free network. The method will be
helpful for deeply describing network topology and provide a starting point for researching
the topology similarity and isomorphism of networks.

© 2016 Elsevier B.V. All rights reserved.

Generally speaking, network is a set of interconnected nodes, where a node is an element of a natural or man-made sys-
tem. Network science is an emerging, highly interdisciplinary research area that aims to develop theoretical and practical
approaches for understanding the natural and man-made systems. The last decade has witnessed the birth of a new move-
ment of interest and research in the study of complex networks [1]. The study of complex networks is pervading all kinds
of sciences today, from physical, biological to social science [2,3], and the network application is also studied [4–7]. Many
real complex networks have emerged some common characteristics, such as small world [8], scale-free [9]. Therefore, some
important network models with real network characteristics have been proposed. For example, BA scale-free network [9],
ER random network [10] and WS small-world network [11].

The development of network science depends on the precise anatomy of network topology. The network topology always
affects the function and the behavior of a dynamic system [12]. For example, the topology of social networks affects the
spread of information and disease [13], and the topology of the power grid affects the robustness and stability of power
transmission [14]. The networks in the ensemble with the same degree distribution could have different connection details,
which could lead to different dynamics phenomena. The apparent ubiquity of complex networks leads to a fascinating set
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Fig. 1. The schematic illustration of the method. G is a network with four nodes and four edges. The number around a node is the degree of the node in
D1,D2,D3 and D4 . D2 is a two-layer degree-tree, and the third-layer of D2 is defined null, labeled ∅. K 2

2 , K 2
3 , K 3

3 are correspondingly identical to K 3
2 , K 2

4 , K 3
4 ,

respectively.

of common problems concerning how the network structure facilitates and constraints the network dynamics. Therefore, it
is important to characterize the topology of complex networks appropriately.

The research on complex networks begins with the effort of defining concepts andmeasures to characterize the topology
of real networks, such as the degree distributions, degree correlations, average path length, network diameter, clustering
coefficient, betweenness and modularity [15,16]. In this paper, a method will be proposed to describe deeply the network
topology, and a similarity coefficient is defined to quantitatively distinguish networks and quantitatively measure the
topology stability of the network generated by amodel. The applications of ourmethodwill also be presented on ER random
networks, WS small-world networks and BA scale-free networks.

1. Method

In a network, a node can be taken as a root, labeled i. Starting from the root i, a breadth-first search tree can be built,
labeled Ti. Ti has a hierarchical structure and contains all the nodes of the network, but the degree of each node cannot be
contained in Ti.Wemake a special provision that the degree of each node in the network is also contained in the breadth-first
search tree, and the new breadth-first search tree is called breadth-first search degree-tree(BFSDT), labeled Di. Therefore,
the degrees of all nodes in the network are layered with the breadth-first search tree. The degree-trees of all nodes can be
composed to a forest, signed F = {Di, i = 1, . . . ,N}, whereN is the number of nodes in the network. The forest F can deeply
characterize the network topology.

Two concepts of the method are defined as follows:

(i) n-layer degree-tree: The sub-degree-treewhich includes the part from the 1th layer to the nth layer inDi is called n-layer
degree-tree, labeled K n

i , and n is a positive integer. Therefore, K n
i has a hierarchical structure and is a sub-degree-tree

with degrees associated with its nodes.
(ii) Identical n-layer degree-trees: For ∀K n

i , K n
j , if K

n
i is isomorphic to K n

j (K n
i

∼= K n
i ), and the degrees of any two nodes

whichmeet the relationship of one-to-one isomorphic mapping in K n
i and K n

j are equal, then we define K n
i and K n

j as the
identical n-layer degree-trees.

Because K n
i is a sub-degree-tree of Di, the n-layer degree-trees of all degree-trees constitute a set, labeled F n

= {K n
i , i =

1, . . . ,N}. F n can characterize the network topology, and the topology can be characterized better and better with the
increasing of n. Specially, for one-layer degree, n = 1, K n

i = K 1
i , and F n

= F 1
= {K 1

i , i = 1, . . . ,N}. One-layer degree-tree
K 1
i is the degree of node i and F 1 is a set of degrees for all nodes. Therefore, general degree is a special case in the method.

The schematic illustration of the method is shown in Fig. 1.
For two given networks G1 and G2, the n-layer degree-trees of all degree-trees from G1 constitute a set, labeled F n

1 and
the n-layer degree-trees of all degree-trees from G2 constitute a set, labeled F n

2 . According to the concept of identical n-layer
degree-trees, a similarity coefficient can be defined to quantitativelymeasure the similarity of n-layer degree-trees between
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Fig. 2. The comparisons between S1 and S2 for ER random networks, WS small-world networks and BA scale-free networks. In the three sub-figures, N
represents the number of nodes from10 to 20000. The black solid line and the red dashed line represent the corresponding results of S1 and S2 , respectively.
ForWS small-world networks, the average degree is 2 and theprobability of rewiring each edge is 0.5. For ER randomnetworks, the probability of connecting
any two nodes is 2/(N − 1). For BA scale-free networks, starting with a globally coupled network of three nodes, we add a new node with 1 edge in each
time step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

F n
1 and F n

2 ,

Sn =
2αn

N1 + N2
, (0 ≤ Sn ≤ 1) (1)

where Sn is the similarity coefficient of n-layer degree-trees between F n
1 and F n

2 , and αn is the pairs of identical n-layer
degree-trees between F n

1 and F n
2 . N1 and N2 are the total number of nodes in networks G1 and G2, respectively. Sn can also be

used to quantitatively distinguish the networks G1 and G2, and the two networks can be distinguished better for a larger n.
Two corollaries can be obtained from the method.

1 The first corollary is stated as follows:
Sn ≥ Sn+1(n ≥ 1), for ∀G1,G2.

Proof. For ∀G1,G2, Sn and Sn+1 can be written as

Sn =
2αn

N1 + N2
, Sn+1

=
2αn+1

N1 + N2
, (2)

where αn is the pairs of identical n-layer degree-trees between G1 and G2, and αn+1 is the pairs of identical (n+ 1)-layer
degree-trees between G1 and G2. The two definitions of both n-layer degree-tree and identical n-layer degree-trees imply
that

αn
≥ αn+1, (3)

then we get

Sn ≥ Sn+1. (4)

2 The second corollary is stated as follows:
If Sn+1

= 1, then Sn = 1(n ≥ 1), for ∀G1,G2.

Proof. If Sn+1
= 1, we invoke the result of Corollary 1 that

Sn ≥ Sn+1, (5)

∵ 0 ≤ Sn ≤ 1, 0 ≤ Sn+1
≤ 1, (6)

∴ Sn = 1. (7)

2. Application of the method

The application of the method is studied in ER random network, WS small-world network and BA scale-free network.
In the three network models, when the parameters for each model are fixed, each model can generate a lot of networks
with the same degree distribution, but the topologies are different. The reason is that Monte Carlo methods is used in the
three network models. According to the method above, we specially calculate S1 and S2 to both quantitatively distinguish
these networks generated by each model and quantitatively measure the topology stability of the network generated by
each model.

Fig. 2 shows the comparisons between S1 and S2 for WS small-world network, ER random network and BA scale-free
network. In the three sub-figures, for ∀N , S1 ≥ S2, and this verifies Corollary 1. S1 reaches a stable value more quickly than
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Fig. 3. S1 and S2 for ER random networks, WS small-world networks and BA scale-free networks with the same average degree 2. The range of N is from
10 to 20000. In the two sub-figures, the black solid line represents the results of WS small-world networks with the probability of rewiring each edge 0,
labeled WS0 . The red dashed line represents rewiring each edge 0.5, labeled WS0.5 . The blue dot line represents that of rewiring each edge 1, labeled WS1 .
The olive dash-dot line represents the results of ER random networks, labeled ER. The magenta dash-dot-dot line represents the results of BA scale-free
networks, labeled BA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S2 with the increasing of N . When N > 20, S1 → 1 means the one-layer degree-trees between these networks are almost
identical, and S1 cannot distinguish these networks well. However, when N = 20, S2 < 0.5 means the two-layer degree-
trees of these networks are much different, and S2 can distinguish these networks well. When N = 20 000, S2 → 1, this
means that the two-layer degree-trees of these networks are almost identical, and S2 cannot distinguish these networks. In
this case, we need to calculate S3 to distinguish these networks. Therefore, Sn can quantitatively distinguish these networks
with the same degree distribution, and these networks can be distinguished better for a larger n.

Fig. 3 shows S1 and S2 for ER random network, WS small-world network and BA scale-free network. In Fig. 3(a), when
N > 1000, the four curves ofWS0.5,WS1, ER and BAnetworks approximately tend to S1 = 1. Therefore, S1 cannot distinguish
these networks well. In Fig. 3(b), the four curves of WS0.5, WS1, ER and BA networks tend to be stable very slowly, and S2
can distinguish these networks well. We easily find that

∀N, S2WS0 > S2WS0.5 > S2WS1 > S2ER > S2BA. (8)

The inequalities indicate that the topology ofWS0 small-world network is themost stable and that the topology of BA scale-
free network is the most unstable. Therefore, Sn can quantitatively measure the topology stability of the network generated
by a model. The larger n is, the better the network topology stability can be measured, and the larger Sn is, the more stable
the network generated by the model is. When N > 10 000, S2 for WS0.5, WS1, ER and BA networks tend to be stable, and
these indicate that if we want to get a stable network generated by a model, the network scale must be large enough. That
is to say, the network topology is more and more stable with the increasing of network size.

Fig. 4 shows the influences of the degree distribution on S1 and S2 for ER random network, WS small-world network
and BA scale-free network. In Fig. 4(a), we can find that when P = 0.5, S1 is minimum, implying the network generated by
ER model is the most unstable. The reason is analyzed as follows. The degree distribution of ER random network follows a
binomial distribution. The average degree and the variance of degree distribution for ER random network can be written as

k̄ = p(N − 1), (9)

σ 2
k = p(1 − p)(N − 1). (10)

Given ER random network with size N , when p = 0.5, σ 2
k is maximum. It implies that the node degree distribution of ER

network is the broadest and the pairs of identical one-layer degree-trees between two networks generated by ER model
are minimal in the case of p = 0.5. Therefore, S1 is minimum in the case of p = 0.5, and a broader degree distribution
will lead to a smaller S1. In Fig. 4(b), we can find that S2 is decreasing with the increasing of the probability p. The reason
is that a larger probability of rewiring each edge will make the degree distributed more broadly [17], and a broader degree
distribution leads to a smaller S2. In Fig. 4(c), we can find S1 is also decreasing with the increasing of m. The reason is also
relative to the degree distribution [17] and is the same to Fig. 4(b). Therefore, the degree distribution plays an important
role in the topology stability of the network generated by amodel. The broader the degree distribution is, themore unstable
the network topology is.
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Fig. 4. The influences of the degree distribution on S1 and S2 for ER random network, WS small-world network and BA scale-free network. The scale of
the network is N = 100. For ER random network, p is the connection probability between any two nodes, p ∈ (0, 1). For WS small world network, p is the
probability of rewiring each edge, p ∈ [0, 1]. For BA scale-free network, starting with a globally coupled network of m0 nodes, we add a new node with m
edges at every time step,m ∈ [1, 10],m0 = 2m + 1.

3. Conclusions

In this paper, we have proposed amethod based on the breadth-first search tree to describe deeply network topology. On
one hand, a similarity coefficient has been defined to quantitatively measure the similarity of n-layer degree-trees between
networks. Two corollaries are given and proved. On the other hand, the applications of the method have been studied.
First, the comparisons between S1 and S2 are done for ER random networks, WS small-world networks and BA scale-free
networks. Sn can quantitatively distinguish these networks with the same degree distribution, and the networks can be
distinguished better for a larger n. Secondly, the comparisons of S1 and the comparisons of S2 are done among ER random
network, WS small-world network and BA scale-free network. Sn can quantitatively measure the topology stability of the
network generated by a model. The larger n is, the better the network topology stability can be measured, and the larger Sn
is, the more stable the network generated by the model is. In addition, a network generated by a mode is more and more
stable with the increasing of the network size. Finally, the influences of the degree distribution on S1 and S2 are discussed
for ER randomnetwork,WS small world network and BA scale-free network. S1 and S2 are smaller for a broader node degree
distribution, and this implies that a broader degree distribution canmake the network topology generated by a model more
unstable. In conclusion, the method is helpful for deeply characterizing the network topology, and provides a starting point
for researching the similarity and isomorphism between two networks.

Acknowledgments

This work was supported by The National Natural Science Foundation of China (Grant Nos. 61503159, 71331003,
71271104, 11275186 and 91024026). The numerical calculations in this paper have been done on the supercomputing
system in the Supercomputing Center of University of Science and Technology of China. We thank Ming Li for useful
discussions.

References

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424 (4) (2006) 175–308.
[2] S.H. Strogatz, Exploring complex networks, Nature 410 (6825) (2001) 268–276.
[3] C. Orsini, M.M. Dankulov, P. Colomer-de Simón, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguñá, G. Caldarelli, et al.,

Quantifying randomness in real networks, Nat. Commun. 6 (3) (2015) 175–185.
[4] L. Lü, M. Medo, C.H. Yeung, Y.-C. Zhang, Z.-K. Zhang, T. Zhou, Recommender systems, Phys. Rep. 519 (1) (2012) 1–49.
[5] L.D.F. Costa, O.N. Oliveira Jr., G. Travieso, F.A. Rodrigues, P.R. Villas Boas, L. Antiqueira,M.P. Viana, L.E. Correa Rocha, Analyzing andmodeling real-world

phenomena with complex networks: a survey of applications, Adv. Phys. 60 (3) (2011) 329–412.
[6] L. Lü, C.-H. Jin, T. Zhou, Similarity index based on local paths for link prediction of complex networks, Phys. Rev. E 80 (4) (2009) 046122.
[7] L. Lü, T. Zhou, Link prediction in complex networks: A survey, Physica A 390 (6) (2011) 1150–1170.
[8] D.J. Watts, Six Degrees, 2003.
[9] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (5439) (1999) 509–512.

[10] P. Erdős, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–61.
[11] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (6684) (1998) 440–442.
[12] J. Zhang, M. Small, Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett. 96 (23) (2006) 238701.
[13] M.E. Newman, Spread of epidemic disease on networks, Phys. Rev. E 66 (1) (2002) 016128.
[14] R. Albert, I. Albert, G.L. Nakarado, Structural vulnerability of the north American power grid, Phys. Rev. E 69 (2) (2004) 025103.
[15] L.D.F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Characterization of complex networks: A survey of measurements, Adv. Phys. 56 (1) (2007)

167–242.
[16] M.E. Newman, The structure and function of complex networks, SIAM Rev. 45 (2) (2003) 167–256.
[17] A.-L. Barabási, R. Albert, H. Jeong, Mean-field theory for scale-free random networks, Physica A 272 (1) (1999) 173–187.

http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref1
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref2
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref3
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref4
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref5
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref6
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref7
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref8
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref9
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref10
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref11
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref12
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref13
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref14
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref15
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref16
http://refhub.elsevier.com/S0378-4371(16)00091-1/sbref17

	A method of characterizing network topology based on the breadth-first search tree
	Method
	Application of the method
	Conclusions
	Acknowledgments
	References


